Math 241 Winter 2024 Lecture 17

Feb 19-8:47 AM

Class QZ 12
Given $u=\langle 12,5\rangle$ and $v=\langle-3,4\rangle$

1) Draw $u \dot{\varepsilon} V$
2) Find $u+v=\langle 12+-3,5+4\rangle$ \qquad

$$
=\langle 9,9\rangle
$$

3) Find the angle between \vec{u} and \vec{v} Round to nearest whole degree.

$$
\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{-16}{13 \cdot 5}
$$

$$
u \cdot v=12(-3)+5 \cdot 4
$$

$$
\begin{array}{ll}
|u||v| 13 \cdot 5 & |u|=\sqrt{12^{2}+5^{2}}=13 \\
\cos \theta=\frac{-16}{65} \rightarrow \theta=\cos ^{-1}\left(\frac{-16}{65}\right) & |v|=\sqrt{(-3)^{2}+4^{2}}=5
\end{array}
$$

$$
\theta \approx 104^{\circ}
$$

$$
\text { Find } \operatorname{Proj} u=\frac{u \cdot v}{|v|^{2}} v=\frac{-16}{5^{2}}\langle-3,4\rangle
$$

$$
=\frac{-16}{25}\langle-3,4\rangle=\left\langle\frac{48}{25}, \frac{-64}{25}\right\rangle
$$

Given $\quad Z=4-3 i, \quad w=2+5 i$

1) $|z|=\sqrt{4^{2}+(-3)^{2}}=\sqrt{25}=\sqrt{5}$
2) $\frac{Z}{W}$
3) $z-w=4-3 i-2-5 i$
$=\frac{4-3 i}{2+5 i} \cdot \frac{2-5 i}{2-5 i}$
4) $z W=(4-3 i)(2+5 i)$

$$
=\frac{8-20 i-6 i+15 i^{2}}{4-10 i+10 i-25 i^{2}}
$$

$$
\begin{aligned}
& =8+20 i-6 i-15 i^{2}=\frac{8-26 i+15(-1)}{4-25(-1)} \\
& =8+14 i-15(-1) \\
& =8+14 i+15 \\
& =23+14 i=\frac{-7-26 i}{29} \\
& =\frac{-7}{29}-\frac{26}{29} i
\end{aligned}
$$

Simplify $\quad i^{80}-i^{43}$

$$
\begin{aligned}
& =\left(i^{2}\right)^{40}-i^{42} \cdot i \\
& =(-1)^{40}-\left(i^{2}\right)^{21} \cdot i \\
& =1-(-1)^{21} \cdot i \\
& =1-(-1) i=1+i
\end{aligned}
$$

$$
\begin{aligned}
& z=x+y i \\
& \begin{array}{cc}
\uparrow & \uparrow \\
\text { Real } & \text { Imasin }
\end{array} \\
& \text { Part Part } \\
& r=|z|=\sqrt{x^{2}+y^{2}} \\
& x=r \cos \theta \\
& y=r \sin \theta \\
& \sin \theta=\frac{y}{r} \\
& \tan \theta=\frac{y}{x} \\
& z=x+y i=r \cos \theta+r \sin \theta i \\
& =r(\cos \theta+i \operatorname{Sin} \theta) \\
& \text { Trig. Form of a Complex } \\
& \text { (Polar form) number }
\end{aligned}
$$

$$
\left.\begin{array}{l}
z=4+4 i \\
x=4 \\
y=4
\end{array} \rightarrow r=\sqrt{x^{2}+y^{2}}=\sqrt{4^{2}+4^{2}}=\sqrt{32}=4 \sqrt{2}\right] \text { (tan} \theta=\frac{y}{x} \rightarrow \tan \theta=1 \rightarrow \theta=45^{\circ} .
$$

$Z=4\left(\cos 300^{\circ}+i \sin 300^{\circ}\right) \quad$ Polar form

$$
\begin{aligned}
& x=r \cos 300^{\circ}=4 \cdot \frac{1}{2}=2 \\
& y=r \sin 300^{\circ}=4 \cdot \frac{-\sqrt{3}}{2}=-2 \sqrt{3}
\end{aligned}
$$

$$
z=2-2 i \sqrt{3}
$$

$$
\begin{aligned}
& z=-1+i \sqrt{3} \\
& x=-1 \quad \rightarrow r=\sqrt{x^{2}+y^{2}}=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}=\sqrt{1+3}=\sqrt{4}=2 \\
& \begin{array}{r}
\tan \theta=\frac{y}{x} \quad \tan \theta=\frac{\sqrt{3}}{-1} \quad \tan \theta=-\sqrt{3} \\
\text { RA. } 60^{\circ}
\end{array} \\
& -1+i \sqrt{3}=r(\cos \theta+i \sin \theta) \\
& =\underbrace{2\left(\cos 120^{\circ}+i \sin 120^{\circ}\right)}_{\text {Polar Form }}
\end{aligned}
$$

Given $\quad Z=-3 i=0-3 i$

1) Draw Z
2) $x=0$

$$
r=\sqrt{x^{2}+y^{2}}=3
$$

$$
y=-3
$$

3) Find θ

$$
\begin{array}{r}
\tan \theta=\frac{y}{x}=\frac{-3}{0} \\
\text { indef fined }
\end{array} \quad \begin{aligned}
& \text { Rectangular form } \\
& x+y i \\
& r=\sqrt{x^{2}+y^{2}} \\
& x=r \cos \theta, y=r \sin \theta \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

$$
\begin{aligned}
-3 i & =r(\cos \theta+i \sin \theta) \\
& =3\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)
\end{aligned}
$$

Trig. Form (Polar Form)

$$
r(\cos \theta+i \sin \theta)
$$

$$
r \operatorname{cis} \theta
$$

Jan 31-8:59 AM

$$
z=-6-6 i
$$

1) Draw Z
2) $x=-6$

$$
\begin{aligned}
& x=-6 \\
& y=-6
\end{aligned} \quad r=\sqrt{x^{2}+y^{2}}=6 \sqrt{2}
$$

$$
-6-6 i=r(\cos \theta+i \sin \theta)
$$

3) Find θ

$$
\begin{aligned}
& \tan \theta=\frac{y}{x} \tan \theta \\
& \tan \theta=\frac{-6}{-6} \\
& \text { RA. } 45^{\circ} \theta
\end{aligned}
$$

Given $Z=8 \operatorname{CiS} 150^{\circ}$

1) Draw z

2) Write z in rectangular form.

$$
\begin{aligned}
& x=r \cos \theta=8 \cos 150^{\circ}=8 \cdot-\cos 30^{\circ}=-8 \cdot \frac{\sqrt{3}}{2}=-4 \sqrt{3} \\
& y=r \sin \theta=8 \sin 150^{\circ}=8 \cdot \sin 30^{\circ}=8 \cdot \frac{1}{2}=4 \\
& 8 \operatorname{cis} 150^{\circ}=8\left(\cos 150^{\circ}+i \sin 150^{\circ}\right) \\
&=-4 \sqrt{3}+4 i
\end{aligned}
$$

$$
\begin{aligned}
& z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \\
& z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& z_{1} \cdot z_{2}=r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
& \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right) \\
& z_{1}^{n}=r_{1}^{n}\left(\cos n \theta_{1}+i \sin n \theta_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
Z & =3\left(\cos 45^{\circ}+i \sin 45^{\circ}\right) \\
w & =2\left(\cos 30^{\circ}+i \sin 30^{\circ}\right) \\
Z w & =3 \cdot 2\left(\cos 75^{\circ}+i \sin 75^{\circ}\right) \\
& =6\left(\cos 75^{\circ}+i \sin 75^{\circ}\right) \\
\frac{Z}{w} & =\frac{3}{2}\left(\cos 15^{\circ}+i \sin 15^{\circ}\right)-30^{\circ} \\
Z^{2} & =3^{2}\left(\cos 2.45^{\circ}+i \sin 2.45^{\circ}\right) \\
& =9\left(\cos 90^{\circ}+i \sin 90^{\circ}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \operatorname{Cis} 100^{\circ} \\
& w=2 \operatorname{Cis} 50^{\circ} \\
& Z W=4 \cdot 2 \operatorname{cis}\left(100^{\circ}+50^{\circ}\right)=8 \operatorname{Cis} 150^{\circ} \\
& \frac{Z}{w}=\frac{4}{2} \operatorname{cis}\left(100^{\circ}-50^{\circ}\right)=2 \operatorname{cis} 50^{\circ} \\
& w^{3}=2^{3} \operatorname{cis} 3.50^{\circ}=8 \operatorname{cis} 150^{\circ}
\end{aligned}
$$

Simplify $\quad \frac{3 \operatorname{Cis} 305^{\circ}}{9 \operatorname{Cis} 65^{\circ}}=\frac{1}{3} \operatorname{Cis}\left(305^{\circ}-65^{\circ}\right)$

$$
=\frac{1}{3} \mathrm{Cis} 240^{\circ}
$$

Simplify

$$
\begin{aligned}
&\left(12 \operatorname{Cis} 18.5^{\circ}\right)\left(3 \operatorname{CiS} 11.5^{\circ}\right) \\
&= 12.3 \operatorname{Cis}\left(18.5^{\circ}+11.5^{\circ}\right) \\
&=36 \operatorname{cis} 30^{\circ}=36\left[\cos 30^{\circ}+i \sin 30^{\circ}\right] \\
&=36\left[\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right] \\
&=18 \sqrt{3}+18 i
\end{aligned}
$$

Simplify

$$
\begin{aligned}
{\left[\frac{45}{22.5} \operatorname{cis} \frac{3 \pi}{4}\right.} & \operatorname{cis} \frac{\pi}{3}
\end{aligned}=2 \operatorname{Cis}\left(\frac{3 \pi}{4}-\frac{\pi}{3}\right)
$$

$$
\begin{aligned}
& z=2 \sqrt{6}-2 i \sqrt{2} \\
& w=\sqrt{2}-i \sqrt{6}
\end{aligned}
$$

find $\frac{z}{w}$
Method I

$$
\begin{aligned}
\frac{2 \sqrt{6}-2 i \sqrt{2}}{\sqrt{2}-i \sqrt{6}} \cdot \frac{\sqrt{2}+i \sqrt{6}}{\sqrt{2}+i \sqrt{6}} & =\frac{2 \sqrt{12}+2 i \sqrt{36}-2 i \sqrt{4}}{\sqrt{4}+i \sqrt{12}-i \sqrt{12}-i \cdot \sqrt{36}} \\
=\frac{4 \sqrt{3}+12 i-4 i+4 \sqrt{3}}{2+6} & =\frac{8 \sqrt{3}+8 i}{8} \\
& =\frac{8(\sqrt{3}+i)}{8}=\sqrt{3}+i
\end{aligned}
$$

$$
z=2 \sqrt{6}-2 i \sqrt{2}
$$

$$
w=\sqrt{2}-i \sqrt{6}
$$

find $\frac{z}{w}$
method II

$$
2 \sqrt{6}-2 i \sqrt{2}=4 \sqrt{2} C_{\text {is }} 330^{\circ}
$$

$$
\begin{aligned}
& x=2 \sqrt{6} \\
& y=-2 \sqrt{2}
\end{aligned} \quad r=\sqrt{24+8}=\sqrt{32}=4 \sqrt{2}
$$

$$
y=-2 \sqrt{2}
$$

$$
\begin{array}{ll}
\tan \theta=\frac{y}{x}=\frac{-2 \sqrt{2}}{2 \sqrt{6}}=-\frac{1}{\sqrt{3}}=-\frac{\sqrt{3}}{3} \quad \begin{array}{l}
\text { R.A. } 30^{\circ} \\
\quad \theta=360^{\circ}-30^{\circ}=330^{\circ}
\end{array}
\end{array}
$$

$$
\sqrt{2}-i \sqrt{6}=2 \sqrt{2} C \text { is } 300^{\circ}
$$

$$
\begin{aligned}
& x=\sqrt{2} \\
& y=-\sqrt{6}
\end{aligned} \rightarrow r=\sqrt{2+6}=\sqrt{8}=2 \sqrt{2}
$$

$\tan \theta=\frac{y}{x}=-\frac{\sqrt{6}}{\sqrt{2}}=-\sqrt{3}$

$$
\text { R.A. } 60^{\circ}
$$

$$
\frac{z}{w}=\frac{4 \sqrt{2} \operatorname{cis} 330^{\circ}}{2 \sqrt{2} \operatorname{cis} 300^{\circ}}=2 \operatorname{cis}\left(330^{\circ}-300^{\circ}\right)
$$

$$
=2 \operatorname{cis} 30^{\circ}
$$

$$
=2\left[\cos 30^{\circ}+i \sin 30^{\circ}\right)
$$

$$
=2\left(\frac{\sqrt{3}}{2}+i \cdot \frac{1}{2}\right)
$$

$$
=\sqrt{3}+i
$$

$$
\begin{aligned}
& (\sqrt{3}-i)^{5} \\
& \sqrt{3}-i \\
& x=\sqrt{3} \rightarrow r=\sqrt{(\sqrt{3})^{2}+(-1)^{2}}=\sqrt{4}=2 \\
& y=-1 \\
& \tan \theta=\frac{y}{x} \quad \tan \theta=\frac{-1}{\sqrt{3}} \quad \tan \theta=-\frac{\sqrt{3}}{3} \quad \text { R.A. } 30^{\circ} \\
& (\sqrt{3}-i)^{5}=\left(2 \operatorname{cis} 330^{\circ}\right)^{5} \\
& \frac{1650}{360}=4.583=2^{5} \operatorname{Cis} 5.330^{\circ} \\
& =32 \text { CiS } 1650^{\circ} \\
& \begin{array}{ll}
.583\left(360^{\circ}\right) & =32 \operatorname{Cis} 210^{\circ} \\
=210^{\circ}
\end{array} \\
& =32\left[\cos 210^{\circ}+i \sin 210^{\circ}\right] \\
& =32\left[-\cos 30^{\circ}-i \sin 30^{\circ}\right] \\
& =32\left[-\frac{\sqrt{3}}{2}-i \cdot \frac{1}{2}\right] \\
& =-16 \sqrt{3}-16 i
\end{aligned}
$$

nth root of $z=r \operatorname{cis} \theta$

$$
\begin{aligned}
& \sqrt[n]{z}=\sqrt[n]{r} \operatorname{Cis} \alpha \\
& \alpha= \frac{\theta+360^{\circ} \cdot k}{n} \quad k=0,1,2,3, \cdots, n-1 \\
& \text { De Moi vre Thrm } \\
& \text { De - Moi-vreh }
\end{aligned}
$$

$$
z^{3}=8
$$

One answer is

$$
8=8+0 i
$$

$\operatorname{Re} x=8$
Im. $y=0$

$$
\sqrt[3]{8}=2
$$

$$
r=8, \quad \theta=0^{\circ}
$$

$$
8=8 \operatorname{cis} 0^{\circ}
$$

$$
\sqrt[3]{8}=\sqrt[3]{8} \text { Cis } \alpha
$$

$$
=2 \operatorname{cis} \alpha
$$

$$
k=0 \rightarrow \alpha=0
$$

$$
2 \operatorname{cis} 0^{\circ}, 2 \operatorname{cis} 120^{\circ}, \quad k=1 \rightarrow \alpha=120^{\circ}
$$

Jan 31-10:34 AM

Jan 31-10:42 AM

$$
\begin{aligned}
& \text { Solve } Z^{2}+25=0 \\
& +\quad Z= \pm \sqrt{-25} \\
& z^{2}=-25 \\
& -25=-25+0 i \\
& \begin{array}{ll}
x=-25 & r=25 \\
y=0 & \theta=180^{\circ}
\end{array} \\
& z^{2}=25 \operatorname{cis} 180^{\circ} \\
& z=\sqrt[3]{25 \operatorname{cis} 180^{\circ}}=5 \operatorname{Cis} \alpha \\
& \alpha=\frac{180^{\circ}+360^{\circ} \cdot k}{2} \\
& \alpha=90^{\circ}+180^{\circ} \mathrm{K} \\
& K=0 \rightarrow \alpha=90^{\circ} \\
& K=1 \rightarrow \alpha=270^{\circ}>\left[\begin{array}{l}
5 \mathrm{CiS} 90^{\circ} \\
5 \operatorname{cis} 270^{\circ}
\end{array}\right] \\
& 5 \operatorname{cis} 90^{\circ}=5\left(\cos ^{8} 90^{\circ}+i \sin ^{8} 90^{\circ}\right)=5 i \\
& 5 \operatorname{cis} 270^{\circ}=5\left[\cos 270^{\circ}+i \sin 270^{\circ}\right]=-5 i^{\circ}
\end{aligned}
$$

Solve

$$
z^{2}=2+2 i
$$

$$
z^{2}=2 \operatorname{cis} 45^{\circ}
$$

$$
\begin{aligned}
& z=\sqrt[\Delta]{2 \operatorname{cis} 45^{\circ}}=\sqrt{2} \operatorname{cis} \alpha \\
& n=2
\end{aligned} \quad \alpha=\frac{45^{\circ}+360^{\circ} \cdot k}{2}
$$

$$
K=0 \quad \alpha=22.5^{\circ}
$$

$$
\alpha=22.5^{\circ}+180^{\circ} \cdot k
$$

$$
k=1 \quad \alpha=202.5^{\circ}
$$

Jan 31-11:00 AM

Solve

$$
\begin{aligned}
& x^{4}-(8+8 i \sqrt{3})=0 \\
& 4 \text { answers } \\
& x^{4}=8+8 i \sqrt{3}
\end{aligned}
$$

$x^{4}=16 \operatorname{Cis} 60^{\circ}$

$$
=\sqrt{256}=16
$$

$$
\begin{aligned}
x=\sqrt[4]{4}_{16 \operatorname{cis} 60^{\circ}}^{\theta=R A} & =\tan ^{-1} \frac{y}{x}=\tan ^{-1} \frac{8 \sqrt{3}}{8} \\
& =\tan ^{-1} \sqrt{3}=60^{\circ}
\end{aligned}
$$

$$
=2 \operatorname{Cis} \alpha \quad \alpha=\frac{60^{\circ}+360^{\circ} \cdot k}{4}
$$

$$
2 \operatorname{Cis} 15^{\circ}
$$

$$
\alpha=15^{\circ} 90^{\circ} \mathrm{K}
$$

$$
2 \operatorname{cis} 105^{\circ}
$$

$$
k=0 \rightarrow \alpha=15^{\circ}
$$

$$
2 \operatorname{cis} 195^{\circ}
$$

$$
2 \text { cis } 285^{\circ}
$$

$$
\begin{aligned}
& k=1 \rightarrow \alpha=105^{\circ} \\
& k=\alpha \rightarrow \alpha=195^{\circ}
\end{aligned}
$$

Jan 31-11:30 AM

